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a b s t r a c t

The problem of determining the accelerations in a mechanical system with friction at zero initial velocities
is discussed. To approximate the solutions, an auxiliary system is constructed in which non-ideal geomet-
rical constraints are produced by elastic forces, the structure of which complies with the static-friction
law. It is proved that the auxiliary system is always solvable for the accelerations (possibly, non-uniquely)
and hence a solution of the initial system also exists and can be constructed by taking a certain limit.
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The idea of obtaining geometrical constraints by taking the limit of an elastic model with an unbounded increase in stiffness, previously
attributed to Courant, found a rigorous proof in the case of ideal constraints, both bilateral1 and unilateral.2–5 An example of the effective
use of this constructive approach is the theorem of existence for a system with an ideal unilateral constraint.6 A similar approach was
employed when realizing non-holonomic constraints by forces of viscous friction,7,8 and also when investigating systems with sliding
friction.9,10

1. Formulation of the problem and description of the method

In problems of mechanical system dynamics, the model of an absolutely rigid body is the simplest, and hence it is widely used when
solving educational and scientific-research problems. We will consider a system M with generalized coordinates q ∈ Rn, subject to unilateral
constraints

(1.1)

Formulae (1.1) express the condition that there should be no deformations when rigid bodies are in contact. We will assume that, at
the instant of time t0 considered, all relations (1.1) are satisfied as equalities, and all generalized velocities are equal to zero.

We will write the equations of motion in the form

(1.2)

where A is the kinetic energy matrix, Q are generalized forces and Rj are the reactions of constraints (1.1).
We will initially assume that the constraints are ideal, in which case their reactions can be expressed by the formulae

(1.3)

To maintain the constraints when t > t0 it is necessary to satisfy the relations

(1.4)
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In addition to this, the normal reactions Nj and normal accelerations [f̈j] cannot take non-zero values simultaneously. Altogether, the
above constraints are described by the relations

(1.5)

which are called the complementarity conditions or the Signorini conditions.
System M is described by relations (1.2), (1.3) and (1.5); as is well known from the linear complementarity theory,11,12 it has a unique

solution in the case when the matrix

is positive definite. In the context of this consideration, this result is formulated as follows.

Theorem 1. The problem of determining the generalized accelerations in the case of ideal unilateral constraints with linearly independent
normal vectors has a unique solution.

To construct the solution we can, in principle, consider all 2k possibilities in formulae (1.5). For purpose’s of economy, we can use one
of the algorithms of linear programming – Lemke’s method.11,12

The idea of a constructive approach, which goes back to d’Alembert, consists of replacing constraints (1.2) by elastic forces, generated
by small deformations of the constraints, which occur with opposite sign of these inequalities. These forces will be calculated using the
following formulae

(1.6)

We will explain the meaning of relations (1.6). If there are no constraints (1.1), after a time �, the coordinates q would have obtained
an increment proportional to q̈. If such a hypothetical displacement is not matched with the j-th constraint, it leads to its deformation by
an amount �j�2/2. The factor c in formula (1.6) takes into account the value of � and the stiffness; an unlimited increase in the latter (for a
small but fixed value of �) corresponds to taking the limit as c → ∞.

We will define an auxiliary system Mc by Eq. (1.2), in which the reactions are calculated from formulae (1.3) and (1.6).

Theorem 2. System Mc has a unique solution q̈c , and it converts into the solution of system M as c → ∞.

Proof. The quantity q̈c , which satisfies system Mc, is a stationary point of the constraint function

(1.7)

where � is the potential energy of the deformations of the constraints. Since function (1.7) is strictly convex, this point is unique and is a
global minimum.

Note that the potential energy of the system is equal to the work of the forces Q for small displacements (deformations) and is therefore
limited. Consequently, as c → ∞, the values of �i in formulae (1.6) tend to zero, i.e. relations (1.5) are satisfied in the limit.

Note that to construct the point q̈c we can use one of the well-known procedures for finding a global minimum of a convex function.
We will now consider the problem of solving system M when there is static friction. We will use the Amonton–Coulomb law in the

form of accelerations of the form13

(1.8)

where wj is the tangential component of the acceleration at the corresponding contact point; these quantities are linear functions of q̈, the
coefficients of which are determined by the configuration of the system considered:

The first formula of (1.8) corresponds to the beginning of sliding at the given point, while the second corresponds to the preservation
of relative rest.

The solution of system (1.1), (1.2) with friction (1.8) is substantially more complicated than in the case of ideal constraints discussed
above. It was shown in Ref. 14 that here there are examples of non-uniqueness of the solution. The sufficient conditions for existence and
uniqueness were assumed in Ref. 15, and the criterion for the existence of a unique solution of this problem was later obtained in Ref. 16. It
was also proved in Ref. 17 that the problem has a solution when a certain condition of the non-singularity system configuration is satisfied
(this result is based on the properties of quasi-variational inequalities and their relation to non-linear complementarity problems).

The idea of a constructive approach in this case consists of using formulae (1.6) together with an approximation of the multivalued
friction law (1.8) using of the following single-valued law with a variable friction coefficient

(1.9)

The auxiliary function �(x) is continuous when x ≥ 0, vanishes when x = 0 and is equal to unity outside the interval (0,c−1), which is
confined to the origin of coordinates when c → ∞.
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Example. A rigid body of unit mass and weight is at rest on a rough horizontal plane. At a certain instant of time a horizontal force Q > 0
begins to act on it. It is required to determine the acceleration q̈.

The solution for friction law (1.8) is easily obtained by exhaustive search:

(1.10)

The use of approximation (1.9) leads to the equation

the left-hand side of which increases monotonically in q̈ while the right-hand side decreases monotonically. The sole solution of this
equation is described by the formula

(1.11)

It is obvious that formulae (1.11) reduce to expression (1.10) in the limit as c → ∞.

2. Systems with associated configurations

In the example given above, the normal reaction is equal to the weight, irrespective of which body is at rest or sliding on the support.
The presence of this property considerably simplifies the analysis of the system;13,18 we will formulate it in general form.

Definition. We will say that a system configuration is associated if the normal reactions of the constraints are uniquely defined by the
values of the generalized forces, irrespective of the friction law.

Theorem 3.18In a system with an associated configuration and friction law (1.8) the actual motion is uniquely defined by the condition for
a minimum of the constraint

(2.1)

To prove this, it is sufficient to note that the function (2.1) is strictly convex, and hence its stationary point is a global minimum. The
quantity W is equal to the work of the friction forces. Consequently, the gradient of the function Z is expressed by the formula

where, by the definition of generalized forces, the quantity ∇W is equal to the total friction force in Eq. (1.2). Hence, this equation is
equivalent to the condition for the constraint to be steady.

Examples (1◦). In the system of the previous section we have w = q̈ and the function (2.1) takes form

(2.2)

As can easily be shown the point (1.11) gives a minimum of function (2.2).

2◦. We will complicate the previous example by constructing a “pyramid” of k heavy rectangular blocks with masses mj, each of which
is acted upon by a horizontal force Qj (j = 1, . . ., k). The solution, by exhaustive search of rectilinear inspection, requires the consideration
of 3k possibilities. Lemke’s method requires a multinominal volume of calculations, but is extremely lengthy to describe.12 According to
Theorem 3, to solve it we can use one of the methods of convex analysis to find a global minimum of the function

(2.3)

Note that the procedure described can also be used when the vectors Qj are non-collinear, in which the vectors 92d can have arbitrary
directions (in the horizontal plane).

We will investigate a system with elastic forces (1.9) and an associated configuration. As can be verified, in this case the work of the
friction forces is expressed by the formula

(2.4)

We can further compile a constraint function Zc by analogy with condition (2.1) but with W replaced by Wc. The minimum of this
function defines the motion of an auxiliary system. By noting that Wc → W when c → ∞ and for any w, we arrive at the following assertion.

Theorem 4. The actual motion in system M with associated configuration and friction law (1.8) can be defined as the limit of the actual
motion of the auxiliary system Mc with friction (2.9) as c → ∞.

Remark. This result has a more illustrative than practical value, since the solution of the auxiliary system is not simpler than the solution
of the initial system (in both cases it is required to minimize the constraint function).
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3. The existence theorem in systems with non-associated configuration

We will now consider the general case when the normal reactions of the constraints cannot be uniquely determined from the contact
conditions without taking shear stresses into account. We will use formulae (1.6) and (1.9) to construct the auxiliary system. We will
formulate the main property of the contact stresses obtained in this model.

The dissipation property of elastic reactions. For any vector of the generalized accelerations q̈ ∈Rn the overall reaction, calculated from
formulae (1.6) and (1.9), satisfies the inequality

(3.1)

To prove this we will assume that the system undergoes a small displacement in a time �t from the equilibrium position with a constant
acceleration q̈. As a result, some of inequalities (1.1) will break down, and the reactions of the remaining constraints will be equal to zero.
At each of the contact points, for which the normal displacement is negative, the normal component of the reaction will be positive, in
view of formula (1.6); in this case, as a consequence of definition (1.9), the tangential displacement and the tangential reaction will be
anticollinear. Hence inequality (3.1) follows.

Theorem 5. Equations (1.2) with elastic reaction forces (1.6) and (1.9) are solvable for any vector of the generalized forces Q ∈Rn.

Lemma 1. Suppose the operator P : S̄a �→ R
n is continuous in a sphere S̄a =

{
x ∈Rn| |x| ≤ a

}
, and the following inequality is satisfied at

the boundary points

(3.2)

Then, in the sphere Sa, we obtain a point x*, at which P(x) = 0.

Proof. In view of the continuity, the operator P is bounded, i.e.,
∥
∥P(x) ≤ M

∥
∥. Moreover, for a sufficiently small number � > 0, in the

boundary layer a − ε ≤ ‖x‖ ≤ a the following condition is satisfied

(3.3)

Consider the auxiliary operator

It is continuous, and for sufficiently small values of � it maps the sphere S̄a into itself. In fact, if ‖x‖ ≤ a − ε, the following inequality is
satisfied

and when a − ε ≤ ‖x‖ ≤ a we have the limit

Assuming

we arrive at the inequality

By the well-known Brourver’s theorem, the continuous mapping U(x), that maps the sphere Sa into itself, has a fixed point, which is
also the required zero of the operator P(x).

Lemma 2. Suppose the operator T(x) is continuous in Rn and the following estimate holds

(3.4)

for a certain positive function �(||x||), when �(||x||) → ∞ as ||x|| → ∞. Then the equation T(x) = y is solvable for any y ∈Rn.

Proof. We put P(x) = T(x) − y, in which case the problem reduces to finding the zero of the operator P(x). Since

the assertion of Lemma 2 follows from Lemma 1.
Proof of Theorem 5. We will represent Eq. (1.2) in the form

In view of the proved dissipation property of the reactions, expressed by formulae (1.6) and (1.9), the following estimate holds

where �m > 0 is the minimum eigenvalue of the kinetic energy matrix A. The assertion of the theorem follows from Lemma 2.
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In the case of a non-associated friction law, the solution of non-linear system (1.2), (1.6), (1.9) may not be unique. We will illustrate this
by a model example.

Example. The system

(3.5)

with a “rigid” constraint q2 ≥ 0 has the solutions q̈1 = −3, q̈2 = 1, F = N = 0 (detachment), q̈ = 0, F = 2, N = 1 (rest) and q̈1 = N − 1 < 0, q̈2 =
0, N = (� − 1)−1, F = �N (slippage), where the second and third solutions are only possible when � > 2. We then use formulae (1.6) and
(1.9) to calculate the reactions, assuming w = q̈1, ı = max{0, −q̈2}. Instead of system (3.5) we obtain the following non-linear system in q̈:

(3.6)

In the interval q̈2 ≥ 0 (detachment) the solutions of both systems are identical. In the region q̈1 < 0, q̈2 < 0, when � > 2 we have the
following solution for fairly large values of c

corresponding to slippage, while in the region q̈1 ≥ 0, q̈2 < 0 we have the solution

corresponding to a state of rest.

Theorem 6. Equations (1.2) with constraints (1.1) and static friction (1.8) are solvable for any vector of the generalized forces Q ∈Rn.

Proof. We will take an arbitrary sequence of positive numbers
{

cj → +∞
}

. For each of these we construct an auxiliary system (1.2), (1.6),

(1.9) and obtain some solution q̈(j) of it (the existence of a solution is guaranteed by Theorem 5). We will show that the sequence
{

q̈(j)

}
is

bounded in Rn. By virtue of inequality (3.1) (the dissipation property of of the reaction) for any vector q̈ ∈Rn the following relation holds

whence the following limit holds

which indicates the boundedness of the sequence {q̈(j)}.
By the Bolzano-Weierstrass theorem, the bounded sequence {q̈(j)} has at least one limit point q̈∗. We will prove that the vector q̈∗

satisfies inequalities (1.1), where the values of the reactions corresponding to it agree both with the equations of motion (1.2) and with
the friction law (1.8).

We will show that the inequality f (q̈∗) < 0 is impossible. In fact, in this case the sequence f (q̈j,k) should have a non-zero limit, and the
normal reaction in formula (1.6) should be infinitely large. This contradicts the formula

in which the left-hand side is bounded.
We will assume that the strict inequality f (q̈∗) > 0 is satisfied, in which case all the terms of the sequence f (q̈j,k), beginning with a

certain number, are also positive, and in formulae (1.6) N = 0, which agrees with the complementarity conditions (1.5).
In the case of a non-zero slip velocity at one of the contacts w* /= 0, the corresponding terms of the sequence wj,k will also be separted

from zero, and hence c|wj,k| → ∞, and �(c|wj,k| = 1) for sufficiently large values of the subscript. This indicates that the first formula of
(1.8), corresponding to slippage, is satisfied.

The remaining case is when the inequality �(c|wjk
| < 1) is satisfied for all terms of the sequence. Hence it follows that w* = 0, which

agrees with the second formula of (1.8), describing static friction. The theorem is completely proved.

Remarks 1◦. The existence theorem was proved earlier for certain additional restrictions17 using methods of the theory of quasi-
variational inequalities. The constructive method used in this paper does not involve these restrictions.

2◦. The non-uniqueness of the solution of the auxiliary system for values of c as large as desired confirms the non-uniqueness of the
solution of the initial system (see the example given above). However, as the following example shows, we cannot assert that every
solution of the initial system can be obtained in this way.

Example. A uniform rod OC of length l is hinged to a fixed support, and its upper end is in contact with the lower surface of a rough
horizontal beam (see the figure). The system M has a single (rotational) degree of freedom and is described by the relations
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Fig. 1.

with the unilateral constraint 	 ≥ 	0, where the value 	0 corresponds to contact. When N = F = 0 Eq. (3.7) has a solution for which N = F =
0, 	̈ > 0, i.e., the rod breaks away from the support. On the other hand, when the following inequality is satisfied

the rod can remain in equilibrium, in which case the components of the reaction are related by the expressions

(3.7)

The auxiliary system Mc has the unique solution ϕ̈ > 0, since, when ϕ̈ < 0, it follows from formulae (1.9) that F < 0, which does not agree
with formulae (3.7).

Note that this lack of agreement is due to the fact that there is a strict relation between the normal and tangential deformations. It can
be removed by increasing the dimension of the auxiliary system by taking into account linear or flexural deformations of the rod.

4. Discussion of the results

As follows from Theorem 5, the problem of determining the generalized accelerations and reactions of the constraints in a system of rigid
bodies with dry static friction is always solvable. However, the solution may be non-unique, i.e., in addition to equilibrium conservation
the start of motion is possible (slippage or detachment). This non-uniqueness is not related directly to the use of the model of an absolutely
rigid body: it is present in equal measure in more complex contact models, which take small deformations into account. We can conclude
that the reason for the uncertainty has different origins.

The uncertainty is not removed nor the failure of Amonton–Coulomb formula (1.8) to describe static friction if only the limit values of
the friction force is non-zero. To justify this thesis we will again consider the system shown in the figure. It is obvious that weakening of
the constraint is possible for as small a value of the angle 	0 > 0 as desired (including the presence of adhesion, if the weight is sufficiently
great). At the same time equality (3.7) is also satisfied for a fairly small value of this angle. Consequently, the uncertainty is not removed.

It was suggested in Ref. 14 that, at the instant of time considered, the normal reactions of the constraints be specified. This is equivalent
to assuming that active forces are applied to the system which reduce these reactions and which vanish at a given moment. If it turns out
that, for such values of the reactions, there are friction forces which maintain the system in a state of rest, this state can be recognised as
being real. This rule is also not universal, since the arbitrarily specified reactions may not correspond to any of the possible solutions of
system (1.2).

In specific systems, it is possible to select a “true” motion from several possible motions using the stability criterion.9 However, in
general, there may be several stable motions.10 A similar situation also arises when there is no friction in the classical Euler example of the
“buckling” of a loaded column.

A criterion of the existence of a unique solution of this problem was obtained earlier in Ref. 16. In the general case, when there are
several solutions, methods of choosing them require further investigation.

Acknowledgements

This research was financed by the Russian Foundation for Basic Research (08-01-00718).



A.P. Ivanov / Journal of Applied Mathematics and Mechanics 74 (2010) 61–67 67

References

1. Rubin H, Ungar P. Motion under a strong constraining force. Comun Pure and Appl Math 1957;10(1):65–87.
2. Kozlov VV. A constructive method of proving the theory of systems with unilateral constraints. Prikl Mat Mekh 1988;52(6):883–94.
3. Deryabin MV, Kozlov VV. The theory of systems with unilateral constraints. Prikl Mat Mekh 1995;59(4):531–4.
4. Kozlov VV, Treshchev DV, Billiards A. Genetic Introduction to the Dynamics of Systems with Impacts. Providence. RI: Amer Math soc 1991.
5. Deryabin MV. General principles of dynamics and the theory of unilateral constraints. Vestnik MGU Ser 1 Mat Mekh 1998;1:53–9.
6. Paoli L, Schatzman M. Vibration avec contraintes unilaterales et perte d’energie aux impacts, en dimension finie. CR Acad sci Paris ser 1 1993;317(1):97–101.
7. Kozlov VV. The realization of non-integrable constraints in classical mechanics. Dokl Akad Nauk SSSR 1983;272(3):550–4.
8. Kozlov VV. The problem of realising constraints in dynamics. Prikl Mat Mekh 1992;56(4):692–8.
9. Neimark Yu I, Fufayev NA. Painlevé paradoxes in the dynamics of a brake shoe. Prikl Mat Mekh 1995;59(3):366–75.

10. Ivanov AP. The properties of the solutions of a fundamental problem in dynamics in Systems with non-ideal constraints. Prikl Mat Mekh 2005;69(3):372–85.
11. Cottle RW, Pang J-S, Stone RE. The linear complementarity problem. Boston: Acad. Press; 1992. p. 762.
12. Popov LD. Introduction to the Theory, Methods and Economic Applications of Complementarity Problems. Ekaterinburg: Izd Ural Univ; 2001.
13. Painleve P. Lessons sur le frottement. Paris: Hermann; 1895.
14. Jellett JH. A Treatise on the Theroy of Friction. Dublin; London: Macmillan; 1872. p. 220.
15. Matrosov VM, Finogenko IA. The solvability of the equations of motion of mechanical systems with sliding friction. Prikl Mat Mekh 1994;58(6):3–13.
16. Ivanov AP. The conditions for the unique solvability of the equations of dynamics of systems with friction. Prikl Mat Mekh 2008;72(4):531–46.
17. Pang J-S, Trinkle JC. Complementarity formulations and existence of solution of dynamic multi-rigid-body contact problems with Coulomb friction. Math Programming

1996;73(2):199–226.
18. Pozharitskii GK. The stabiity of the equilibria for systems with dry friction. Prikl Mat Mekh 1962;26(1):5–14.

Translated by R.C.G.


	The use of the constructive method in systems with static friction
	Formulation of the problem and description of the method
	Systems with associated configurations
	The existence theorem in systems with non-associated configuration
	Discussion of the results
	Acknowledgements
	References


